Metal Complexes of Telluroether: Crystal Structure of (Ph₂Te)Fe(CO)₃I₂ and (Ph₂Te)W(CO)₅

Wen-Feng Liaw,*,† Ming-Hsi Chiang,† Chia-Huei Lai,† Show-Jen Chiou,[†] Gene-Hsiang Lee,[‡] and Shie-Ming Peng[‡]

Departments of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058, Republic of China, and National Taiwan University, Taipei, Taiwan, Republic of China

Received October 19, 1993

Introduction

Although the chemistry of transition metal-thioether complexes is extensive,¹ iron-telluroether complexes are less well-known,¹⁻³ and few X-ray diffraction measurements of iron-telluroether complexes have been reported.^{1,4} The reason is probably the perception that iron-telluroether chemistry is similar to that with thioether.^{1, 2} Iron-telluroether complexes suffer from inherent instability and are difficult to isolate as crystalline solids.^{1,2,5} Here we report the first crystalline iron(II)-telluroether complexes.³ The observation of transfer of the diphenyl telluroether ligand from Fe(II) to W(0) in the reaction of $(Ph_2Te)Fe(CO)_3I_2$ with $W(CO)_{5}(THF)$ provides a comparison of the relative stability of bonding of diphenyl telluroether toward the W(CO)₅ and Fe- $(CO)_{3}I_{2}$ fragments.

Results and Discussion

Iron pentacarbonyl reacted rapidly with Ph₂TeI₂, obtained as a brown solid by addition of I_2 to diphenyl telluroether in diethyl ether solution,^{6,7} in tetrahydrofuran (THF) at ambient temperature to give a dark brown-red solution from which the moderately air- and light-sensitive crystalline solid (Ph₂Te)Fe(CO)₃I₂ was isolated in 93% yield after recrystallization with hexane. The reaction proceeded by oxidative addition of the I–I bond to Fe(0)and ligand displacement, as shown in Scheme 1a. (Ph₂Te)Fe- $(CO)_{3}I_{2}$ is stable either as a solid or in organic solution under N_{2} atmosphere at room temperature, but decomposes at T > 55 °C.

The analogous (MeTePh)Fe(CO)₃ I_2 was prepared via facile oxidative addition of I₂ to freshly prepared oily (MeTeR)Fe- $(CO)_4$, obtained by methylation of $[RTeFe(CO)_4]^{-,2}$ in equimolar proportions in THF at room temperature (Scheme 1b).

The structure of $(Ph_2Te)Fe(CO)_3I_2$ was confirmed by X-ray diffraction of a single crystal. The distinctive IR ν_{CO} spectrum of $(Ph_2Te)Fe(CO)_3I_2$ contains one strong band and two medium bands at 2087 s, 2042 m, and 2025 m cm⁻¹, in contrast to two strong bands (v_{CO}) in the anionic fac-[Fe(CO)₃(TePh)₃]⁻ in THF.⁵

[†] National Changhua University of Education.

- (1) (a) Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365. (b) Gysling, H. J. Coord.Chem. Rev. 1982, 42, 133.
- (a) Liaw, W.-F.; Chiou, S.-J.; Lee, W.-J.; Lee, G.-H.; Peng, S.-M. J. (2)Chin. Chem. Soc. (Taipei) 1993, 40, 361. (b) Liaw, W.-F.; Horng, Y.-.; Ou, D.-S.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem. Soc. (Taipei) 1993. 40. 367
- (3) (a) Hieber, W.; Kruck, T. Chem. Ber. 1962, 95, 2027. (b) Abel, E. W.; Hutson, G. V. J. Inorg. Nucl. Chem. 1969, 31, 3333. (c) Faraone, F.;
- Pietropaolo, R.; Sergi, S. J. Organomet. Chem. 1970, 24, 797. (a) Schumann, H.; Arif, A. M.; Rheingold, A. L.; Janiak, C.; Hoffmann, R.; Kuhn, N. Inorg. Chem. 1991, 30, 1618. (b) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1984, 276, 55. (c) Kuhn, N.; Schumann, H.;
- Zauder, E. J. Organomet. Chem. 1987, 327, 17.
 (5) (a) Liaw, W.-F.; Chiang, M.-H.; Liu, C.-J.; Harn, P.-J.; Liu, L.-K. Inorg. Chem. 1993, 32, 1536. (b) Liaw, W.-F.; Lai, C.-H.; Chiang, M.-H.; Hsieh, C.-K.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem. Soc. (Taipei) 1993, 40,

Haller, W. S.; Irgolic, K. J. J. Organomet. Chem. 1972, 38, 97. (a) Alcock, N. W.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1984, 869. (b) Einstein, F.; Trotter, J.; Williston, C. J. Chem. Soc. A 1967, 2018.

Scheme 1

We attribute this to the unsymmetrical bonding environment around the iron metal atom in $(Ph_2Te)Fe(CO)_3I_2$.

An ORTEP drawing of the structure of $(Ph_2Te)Fe(CO)_{3}I_{2}$ determined from X-ray diffraction of a single-crystal appears in Figure 1. In crystals of this monomeric complex, the coordination geometry around the Fe(II) center is a distorted octahedron. The length, 2.585(2) Å, of the Fe–Te(Ph)₂ bond in $(Ph_2Te)Fe(CO)_3I_2$ is comparable to another $Fe-Te(Me)_2$ distance, 2.533(1) Å, of the structurally characterized, corresponding cationic irontelluroether complex $[CpFe(CO)_2(TeMe_2)]^+$.

The intramolecular Te-I contact distances in (Ph₂Te)Fe- $(CO)_{3}I_{2}$ are in the range 3.423(2)-3.486(2) Å, which is greater than Te-I bond length 2.928(1) Å in the α -Ph₂TeI₂ free ligand⁷ but much smaller than 4.35 Å, the sum of the van der Waals radii of tellurium and iodide.⁸ Although the result (Te---I contact distance average 3.454(2) Å) indicates the absence of direct Te-I bonding, intramolecular Te-I interactions (I-Fe-Te average $83.55(7)^{\circ}$ are considered to be significant in $(Ph_2Te)Fe(CO)_{3}I_{2}$

The intramolecular I(1)...I(2) contact distance is 3.759(3) Å $(I(1)-Fe-I(2) 92.58(6)^{\circ})$ in $(Ph_2Te)Fe(CO)_3I_2$.

The two Te-C bonds (2.118(7) and 2.068(8) Å) in (Ph_2Te) - $Fe(CO)_{3}I_{2}$ have an average length of 2.093(8) Å which corresponds to the sum of the radii, 2.10 Å, of Te (1.37 Å) and sp² C (0.73 Å),⁸ and parallels the Te-C bond length of 2.13(2) Å in the Ph_2TeI_2 free ligand.⁷

 $(Ph_2Te)Fe(CO)_3I_2$ reacted with $W(CO)_5(THF)$ in THF at ambient temperature to yield an orange yellow solution from which the air-stable crystalline solid (Ph2Te)W(CO)5 was isolated in 62% yield after removal of solvent and recrystallization with hexane. Attempts to isolate, and observe spectrally, an intermediate were unsuccessful.

According to its crystal structure, (Ph₂Te)W(CO)₅ has an almost regular octahedral coordination geometry (Figure 2). The $W-TePh_2$ bond of length 2.809(1) Å is comparable with the W-Te bond of length 2.784(1) Å in pentacarbonyl(3-phenyl-2tellurobicyclo[2.2.1]hept-5-ene)tungsten.⁹ The C(6)-Te-C(12) bond angle 94.8(5)° indicates a greatly distorted tetrahedral disposition of electron pairs about the tellurium atom.

Experimental Section

All reactions were performed under nitrogen using standard Schlenk techniques. Reagents were purchased from Aldrich Chemical Co. Infrared spectra were recorded on a spectrometer (Bio-Rad FTS-7 FTIR) using 0.1-mm sealed KBr solution cells. NMR spectra were measured on a Bruker AC 200 spectrometer. UV-visible spectra were recorded on a GBC 918 spectrophotometer. Elemental analysis was made on a CHN analyzer (Heraeus).

Synthesis of $(Ph_2Te)Fe(CO)_{3}I_2$. The neutral $(Ph_2Te)Fe(CO)_{3}I_2$ was prepared by dissolving Ph₂TeI₂ (805 mg, 1.5 mmol) in THF (10 mL)^{6,7} and treating it with $Fe(CO)_5$ (198 μ L, 1.5 mmol) added via microsyringe. The reaction occurs immediately with observable evolution of gaseous CO. The dark brown-red solution was then concentrated after stirring

[‡]National Taiwan University.

⁽⁸⁾ Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; pp 224, 260. (a) Fischer, H.; Früh, A.; Troll, C. J. Organomet. Chem. 1991,415, 211.

⁽b) Schumann, H.; Weis, R. Angew. Chem., Int. Ed. Engl. 1970, 9, 246.

Figure 2. ORTEP drawing and labeling scheme for $(Ph_2Te)W(CO)_5$ with thermal ellipsoids drawn at the 50% probability level.

for 20 min at room temperature. Slow addition of hexane (5 mL) and storage for 2 weeks at 4 °C produced a dark brown-red crystalline product (935 mg, 93% yield). IR ν_{CO} (THF): 2087 s, 2042 m, 2025 m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 7.5-8.0(m) ppm (C₆H₅). ¹³C NMR (CD₃-COCD₃): δ 211.6(s) (CO), 136.5 (s), 131.9 (s), 131.0 (s), 120.5 (s) ppm (C₆H₆). Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹, cm⁻¹)]: 323 (28 224), 357 (15 876). Anal. Calcd for C₁₅H₁₀O₃TeI₂Fe: C, 26.67; H, 1.49. Found: C, 26.85; H, 1.64.

Preparation of (MeTePh)Fe(CO)₃I₂. The complex (MeTePh)Fe(CO)₃I₂ was made by combining I₂ (127 mg, 0.5 mmol) and freshly prepared oily (MeTePh)Fe(CO)₄ (addition of MeI to [PPN][PhTeFe(CO)₄] (456 mg, 0.5 mmol)) in THF (5 mL)² and stirring the mixture for 5 min at ambient temperature. The dark brown-red solution was layered with hexane (5 mL); storage for 2 weeks at 4 °C led to formation of dark brown-red crystals (287 mg, 94% yield) of the product. IR ν_{CO} (THF): 2085 s, 2038 m, 2018 m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 218 (CO), 117.8, 130.2, 131.0, 134.2 (C₆H₅, CH₃, unresolved). Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹, cm⁻¹)]: 334 (24 861), 365 (18 181).

Reaction of (Ph₂Te)Fe(CO)₃I₂ and W(CO)₅(THF). A solution of (Ph₂Te)Fe(CO)₃I₂ (203 mg, 0.3 mmol) in THF (5 mL) was added to W(CO)₅(THF) obtained by photolysis of W(CO)₆ (106 mg, 0.3 mmol) in THF (15 mL) at room temperature. The reaction mixture was stirred for 0.5 h, and the solvent was removed under vacuum. Hexane was added to extract the neutral product. Recrystallization of the product from hexane and then cooling to 4 °C for 2 weeks afforded orange-yellow crystals of (Ph₂Te)W(CO)₅ isolated yield 62%. IR ν_{CO} (THF): 1922 sh, 1940 vs, 1982 vw, 2070 w cm⁻¹. ¹H NMR (CD₃COCD₃): δ 7.34-7.78 (m) ppm (C₆H₅). ¹³C NMR (CD₃CN): δ 200.6(s), 198.1(s) (CO), 139, 137.1, 130.9, 116.3 ppm (C₆H₅). Anal. Calcd for C₁₇H₁₀O₅TeW: C, 33.71; H, 1.67. Found: C, 33.74; H, 1.88.

Crystallography. The crystal data are summarized in Table 1. The moderately air-sensitive crystal (Ph₂Te)Fe(CO)₃I₂ chosen for diffraction measurement was ca. $0.10 \times 0.50 \times 0.50$ mm (the air-stable crystal

Table 1.	Crystallographic	Data	for	$(Ph_2Te)Fe(CO)_3I_2$ and
(Ph ₂ Te)W	′(CO)5			

	$(Ph_2Te)Fe(CO)_3I_2$	(Ph ₂ Te)W(CO) ₅
chem formula	$C_{15}H_{10}O_{3}TeFeI_{2}$	C ₁₇ H ₁₀ O ₅ TeW
fw	675.53	605.75
cryst syst	triclinic	orthorhombic
space group	PĨ	Pbca
λ, Å (Μο Κα)	0.7107	0.7107
a, Å	9.998(3)	12.892(2)
b, Å	10.139(4)	17.068(2)
c, Å	10.288(7)	16.289(2)
α , deg	103.32(4)	90.0
β , deg	97.54(4)	90.0
γ , deg	112.46(3)	90.0
V, Å ³	909.6(8)	3584.1(8)
Z	2	8
d (calcd), g cm ⁻³	2.466	2.245
μ , cm ⁻¹	57.73	82.06
abs (min and max transm coeff)	0.393-1.000	0.643-1.000
F(000)	616	2224
T, °C ́	25	25
<i>R</i> ^⁰	0.035	0.030
R_{*}^{b}	0.037	0.032

 ${}^{a} R = \sum (F_{o} - F_{c}) / \sum F_{o}. {}^{b} R_{w} = [\sum (w(F_{o} - F_{c})^{2} / \sum w F_{o}^{2}]^{1/2}.$

Table 2. Selected Bond Distances (Å) and Angles (deg) for (a) $Ph_2Te)Fe(CO)_3I_2$ and (b) $(Ph_2Te)W(CO)_5$

	(a) (Ph ₂ Te)Fe(CO) ₃ I ₂	
Fe–Te	2.585(2)	Fe-I(1)	2.564(2)
Fe-I(2)	2.636(2)	Fe-C(1)	1.770(9)
Fe-C(2)	1.823(9)	Fe-C(3)	1.727(9)
Te-C(4)	2.118(7)	Te-C(10)	2.068(8)
I(1)-Fe-I(2)	92.58(6)	I(1)-Fe-Te	83.32(7)
I(1)-Fe-C(1)	85.4(3)	I(1)-Fe-C(2)	88.0(3)
I(1)-Fe-C(3)	174.6(3)	I(2)-Fe-Te	83.78(5)
Te-Fe-C(1)	96.3(3)	Te-Fe-C(2)	165.9(3)
Te-Fe-C(3)	93.8(3)	Fe-Te-C(4)	105.6(2)
Fe-Te-C(10)	109.8(2)	C(4)-Te-C(10)	94.3(3)
	(b) (Ph ₂ T	e)W(CO)5	
W-Te	2.809(1)	Te-C(6)	2.12(1)
Te-C(12)	2.13(1)	W-C(1)	2.03(2)
W-C(2)	1.99(2)	W-C(3)	2.04(2)
W-C(4)	2.03(2)	W-C(5)	2.07(2)
C(6)-Te-C(12)	94.8(5)	Te-W-C(1)	92.8(4)
TeWC(2)	97.0(4)	Te-W-C(3)	172.2(4)
Te-W-C(4)	88.3(4)	Te-W-C(5)	87.1(4)
W-Te-C(6)	101.0(4)	W-Te-C(12)	109.0(4)

(Ph₂Te)W(CO)₅ had crystal dimensions $0.05 \times 0.20 \times 0.30$ mm) was mounted on a glass fiber and coated in epoxy resin. The unit-cell parameters were obtained from 25 reflections ($16.62^{\circ} < 2\theta < 24.40^{\circ}$ for (Ph₂Te)Fe(CO)₃I₂; 17.60° < $2\theta < 32.00^{\circ}$ for (Ph₂Te)W(CO)₅). Diffraction measurements were carried out on a Nonius CAD 4 diffractometer with graphite-monochromated Mo K α radiation employing the $\theta/2\theta$ scan mode. A ψ scan absorption correction was made. Structural determinations were made using the NRCC-SDP-VAX package of programs.¹⁰ Selected bond distances and angles are listed in Table 2.

Acknowledgment. We thank the National Science Council of the Republic of China (Taiwan) for support of this work.

Supplementary Material Available: Complete crystallographic data, bond lengths and angles, atomic parameters, and u(i,j) or U values for (Ph₂Te)Fe(CO)₃I₂ and (Ph₂Te)W(CO)₅ (8 pages). Ordering information is given on any current masthead page.

(10) Gabe, E. J.; LePage, Y.; Charland, J. P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384.